Stability of Quartic Functional Equation in Modular Spaces via Hyers and Fixed-Point Methods

نویسندگان

چکیده

In this work, we introduce a new type of generalised quartic functional equation and obtain the general solution. We then investigate stability results by using Hyers method in modular space for equations without Fatou property, ?b-condition both property. Moreover, with help fixed-point technique involving idea property spaces. Furthermore, suitable counter example is also demonstrated to prove non-stability singular case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces

In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

a fixed point approach to the hyers-ulam stability of an $aq$ functional equation in probabilistic modular spaces

in this paper, we prove the hyers-ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

Hyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach

‎In this paper‎, ‎we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method‎.

متن کامل

Intuitionistic fuzzy stability of a quadratic and quartic functional equation

In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10111938